
UIT Development: How to Access HPC Resources Using the

UIT Web Service

Wes Monceaux, Keith Rappold, and Patti Duett

Information Technology Laboratory

Scotty Swillie and Robert S. Maier

Major Shared Resource Center

U.S. Army Engineer Research and Development Center

Vicksburg, MS

Weston.P.Monceaux@erdc.usace.army.mil

Keith.N.Rappold@erdc.usace.army.mil

Patti.S.Duett@erdc.usace.army.mil

Scotty.Swillie@erdc.usace.army.mil

Robert.S.Maier@erdc.usace.army.mil

Abstract
The User Interface Toolkit (UIT) is a Web ser-

vice that provides an application programming in-

terface (API) for accessing and manipulating high

performance computing (HPC) resources. Develop-

ers can use this API to create custom software that

can make use of HPC resources as desired. This

presentation will demonstrate how to make use of

existing development tools to access the UIT Web

service API.

One of the objectives of the UIT is to provide a

way for developers to more easily create software

that accesses HPC resources. By making it easier to

create HPC-aware desktop applications, many users

would be able to benefit from the resources the HPC

has to offer. This goal is accomplished through the

Web service API. The goal of this presentation is to

give interested developers a jumpstart into the usage

of the API.

Developers will be shown how to access the API

using two predominant software development envi-

ronments. The first will use Microsoft’s Visual Stu-

dio to access the API in the .NET development envi-

ronment. The second will use Apache’s Axis Web

service libraries to demonstrate API usage in a Java

development environment. Other languages and

available tools will be mentioned.

The anticipated result is that many developers

will feel more comfortable with using the UIT API

to construct custom software that accesses HPC

resources. At the very least, developers should have

a starting point with what tools will be required and

how they can expect to use them.

Providing an API for accessing HPC resources

is useless if developers do not understand how to

use it. The investment in the UIT API has a higher

return rate as the number of developers that use it

rise. It only makes sense to demonstrate to develop-

ers how to make use of the UIT API.

1. Introduction

The User Interface Toolkit (UIT) is a

Web service that provides an application

programming interface (API) for accessing

and manipulating high performance comput-

ing (HPC) resources. Application developers

with a need to utilize the computing power

of the HPC systems can use this API to cre-

ate custom software that can make use of

HPC resources as desired. This paper will

discuss how to make use of existing devel-

opment tools to access the UIT Web service

API.

In this paper, developers will be shown

how to access the API using the two cur-

rently dominant software development envi-

ronments for doing web service client de-

velopment. The first will use Microsoft’s

Visual Studio to access the API in the .NET

development environment. The second will

use Apache’s Axis Web service libraries to

demonstrate API usage in a Java develop-

ment environment. SOAP tools available for

other programming languages and environ-

ments will be mentioned.

2. Objectives

One of the objectives of the UIT is to

provide a way for developers to more easily

create software that accesses HPC resources.

By making it easier to create HPC-aware

desktop applications, many users would be

able to benefit from the resources the HPC

has to offer. This goal is accomplished

through the UIT web service API. The goal

of this paper is to give interested developers

a jumpstart into the usage of the API.

3. How Web Services work

A web service is a software system that

allows communication between machines

over a network. The service exposes an in-

terface defined in a format such as WSDL

which describes how to interact with the

service. This communication often consists

of XML and is normally sent by HTTP. The

messages sent are often enclosed in a SOAP

envelope which is a standard protocol for

sending XML over HTTP.

Because web services are built on open

standards, it allows for interoperability be-

tween different programming languages. [1]

4. Access with dotNET

This paper will attempt to show how to

use Microsoft dotNET to create an applica-

tion that will make use of the UIT API. The

application will call the authenticate method

within the API to get a token. This token

will then be used to call getPublicHosts

method to return a list of available public

hosts on the MSRC network.

4.1 Prerequisites

Visual Studio is the primary requirement

for developing applications that run within

the .NET runtime environment. Information

about visual studio can be found at

http://msdn.microsoft.com/vstudio.

Additionally, SSL certificates are re-

quired to allow for SSL encryption between

the .NET client and the web server. Visual

Studio accesses the same root certificate

keystore as Internet Explorer. For this walk-

through, install the DoD root certificates

within IE by running “InstallRoot.exe”. In-

structions for this can be found at

http://www.onr.navy.mil/resources/instructi

ons.asp.

4.2 Creating the Application

This paper will demonstrate how to cre-

ate a dotNET application to utilize UIT. For

the purposes of demonstration, an applica-

tion will be created that simply authenticates

using kerberos and then lists the public hosts

available for use.

4.2.1 Creating the Project

First, create a new project for your ap-

plication. Choose File, New Project. For

this application, select “Visual C# project”

from the project type list and then “Win-

dows Application” from the template list.

Give your project a name in the box below.

For this project, type “UITTestApp”.

4.2.2 Adding a Web Reference

A blank GUI form will appear on the left

side of the Visual Studio IDE. On the right

side, there will be a “solution explorer”.

Right click on “references”, “add web refer-

ence” and you will be presented with a “add

web reference” window.

In the URL textbox, type the url refer-

ence to the UIT web service. For this exam-

ple, use

https://www.uit.hpc.mil/UITAPI/UITAPI.jw

s?wsdl. Click “go” and a window with the

API methods listed will be shown. Give the

web reference a name in the textbox on the

bottom right (“uitapi”) and click “add refer-

ence”. In the “solution explorer”, there

should now be a “web reference” with “ui-

tapi” shown below it.

Figure 1. Adding a web reference in

dotNET.

4.2.3 Creating a Form

Create a simple form to accept kerberos

credential information, authenticate, and

make the api call to get a list of hosts avail-

able. Click on the “toolbox” toolbar on the

left side and drag 4 textboxes to the form.

Drag a label beside the first

, second, and

third textboxes.

Click on the first label and change its

text property in the properties window (lo-

cated in the bottom right corner of the Vis-

ual Studio IDE) to “Principal”. Change the

following two labels to “Password” and

“Passcode” respectively.

For the fouth textbox, change the multi-

line property to true. For the Password text-

box, change its PasswordChar property to

“*”.

Drag a button to the bottom of the form

and change its text property to “Login”.

When complete, the form should look like

Figure 2.

Figure 2. Example login form.

4.2.4 Calling the UIT API

Double click the login button which will

bring up the coding screen. The cursor will

already be within the coding section for the

button_Click action. In this section, add the

following lines of code to create a new in-

stance of web service we added the refer-

ence for at the beginning.

uitapi.EZHPCAPIService uitws = new UIT-

TestApp.uitapi.EZHPCAPIService();

The authenticate method within UIT re-

quires two strings. The first is an XML cre-

dentials string that contains the information

from the form. The second is the authenti-

cation method which will be acquired from

an additional method call. First the XML

credentials string can be constructed with

the following code.

string xmlcreds = "<credentials><username>"+

textBox1.Text + "</username><password>"+

textBox2.Text + "</password><passcode>"+

textBox3.Text + "</passcode></credentials>";

The second string is the authentication

method and can be acquired from the getRe-

quiredTransportMethods api call. This call

will return a string array of authentication

methods. The first method in the array

should me the Kerberos authentication

method and is the one we want.

string[] authMethods =

ezws.getRequiredTransportMethods();

string msrcAuth = authMethods[0];

Call the authentication method which

will return a token to be used with additional

api calls.

String token =

ezws.authenticateUser(xmlcreds, msrcAuth);

if ((token == null) || (token. Equals("")))

Application.Exit();

Call the getPublicHosts API method to

get a string array listing of the hosts avail-

able.

string[] hosts =

uitws.getPublicHosts(token);

Display the public hosts in the multiline

textbox.

for (int i=0; i < hosts.Length; i++)

textBox4.AppendText(hosts[i]+"\n");

Run the application by pressing the F5

button to start the application in debug

mode. The results of the run should look

like Figure 3.

Figure 3. List of public hosts.

5. Access with Axis

This paper will now show how to use

java to create an application that will make

use of the UIT API. The application will

again call the authenticate method within the

API to get a token. This token will then be

used to call getPublicHosts method to return

a list of available public hosts on the MSRC

network.

5.1 Prerequisites

The four requirements for developing

this application are as follows:

• A current version of the java jdk

(http://java.sun.com/javase/downloa

ds/index.html). Version 5.0 JDK at

the time of this publication.

• A current version of apache axis

(http://ws.apache.org/axis/). Version

1.3 at the time of this publication.

• An editor to write code in. For this

publication, we will use netbeans

IDE (http://www.netbeans.org/)

• Windows XP Professional

5.2 Creating the application

This paper will now demonstrate how to

create a java application to utilize UIT.

Again an application will be created that

simply authenticates using Kerberos and

then lists the public hosts available for use.

5.2.1 Enable SSL

As with the dotNET example, an SSL

certificate will be needed to enable java to

communicate with the server over SSL.

Go to the UIT website (www.uit.hpc.mil)

and download the SSL cerificate to the di-

rectory where the Java cacerts file is located

(ex: C:\j2sdk1.4.2_04\jre\lib\security).

Import the ssl certificate into the cacerts

keystore using keytool.

C:\j2sdk1.4.2_04\jre\lib\security> keytool -

import -trustcacerts

-alias uitcert -keystore cacerts

-file dod.cer

When prompted for keystore password,

type changeit (unless the password for the

keystore has already been changed). When

prompted for "trust this certificate", type

yes.

5.2.2 Use Apache Axis to Generate Stubs

Open a browser to the UIT WSDL file

(https://www.uit.hpc.mil/UITAPI/UITAPI.j

ws?wsdl).

Save the page as a .wsdl file. Choose

File, save as "UITAPI.wsdl" and save it to

the lib directory within apache axis.

Run WSDL2Java to create java stubs

that will interact with the web service.

java -classpath

“axis-ant.jar:

axis-schema.jar:

axis.jar:

commons-discovery-0.2.jar:

commons-logging-1.0.4.jar:

jaxrpc.jar:log4j-1.2.8.jar:

log4j.properties:

saaj.jar:

wsdl4j-1.5.1.jar”

org.apache.axis.wsdl.WSDL2Java

UITAPI.wsdl -p uittest

This will create a directory or package

named uittest that contains the java stubs

necessary to interact with UIT.

5.2.3 Create a Project

Start a new project for this demonstra-

tion. From the Netbeans IDE, select: File,

New Project. Click next.

On the new project page, select general

from the categories list and java application

from the projects list. Click next.

On the name and location page, give

your project a name. UITDemo was chosen

as the name for this demo. Additionally, we

gave our main class a name of

uit_demo_main. Click finish.

5.2.4 Add Libraries to the Project

Right click on the UITDemo project and

select properties. Choose sources, add

folder and choose the directory where the

Axis generated stubs are located.

Create a library that points to the axis jar

files. Go to tools, library manager and click

on new library and give it a name of axis.

Now select add jar/folder and choose the

directory where the axis jars are located.

Select your project UITDemo and go to

file, project properties. Click on libraries,

add library and choose axis. This library is

now part of the project.

5.2.5 Calling the UIT API

Use your generated stubs to create a new

instance of the API service.

uittest.EZHPCAPIServiceLocator

 locator =

 new uittest.EZHPCAPIServiceLocator();

uittest.EZHPCAPI_PortType api = null;

try

{

 api = locator.getEZHPCAPI();

}

catch(Exception e){}

Prompt the user for the principal pass-

word and passcode required for authentica-

tion.

java.io.BufferedReader br = new

java.io.BufferedReader(new

java.io.InputStreamReader(System.in));

String principal = "";

String password = "";

String passcode = "";

try {

 System.out.println("Enter principal:

username@WES.HPC.MIL: ");

 principal = br.readLine();

 System.out.println("Enter password:

");

 password = br.readLine();

 System.out.println("Enter passcode:

");

 passcode = br.readLine();

} catch (Exception e) {}

The authenticate method within UIT re-

quires two strings. The first is an XML cre-

dentials string that contains the information

from the form. The second is the authenti-

cation method which will be acquired from

an additional method call. First the XML

credentials string can be constructed with

the following code. The principal, pass-

word, and passcode strings should be prop-

erly XML encoded (replace ampersands (&)

with the XML encoded “&” value,

etc.).

String credentials = "<creden-

tials><username>"+ principal +

"</username><password>"+ password +

"</password><passcode>"+ passcode +

"</passcode></credentials>";

Secondly, one must call the method

getRequiredTransportMethods to get a list

of available transport methods for authenti-

cation. Kerberos transport is the only one

available at the time of this publication.

String[] tmp =

api.getRequiredTransportMethods();

String defAuthMethod = tmp[0];

Call authenticateUser to get back a token

to use with other method calls.

token = api.authenticateUser(credentials,

defAuthMethod);

Call getPublicHosts to get a list of avail-

able public hosts.

if (token != null && token != ""){

 String[] hosts =

api.getPublicHosts(token);

 for (int i=0; i < hosts.length; i++)

 System.out.println(hosts[i]+"\n");

}

This should generate a list of public

hosts which are available for use within the

UIT.

6. Other tools

Below is a list of references to tools

which can be used with other programming

languages:

• nuSOAP. SOAP Toolkit for PHP.

http://sourceforge.net/projects/nusoa

p/

• Axis C++. C++ libraries for SOAP.

http://ws.apache.org/axis/cpp/index.

html

• SOAP::lite. Perl libraries for SOAP.

http://soaplite.com/

• Python Web Services. A page with

links for interacting with web ser-

vices in perl.

http://pywebsvcs.sourceforge.net/

7. Conclusion

 Once a developer has the proper tools

configured for working with SOAP web ser-

vices, it is easy to see that making basic use

of the UIT API is not that difficult. Hope-

fully, this paper has given those developers

interested in using the UIT API a quick

primer on how to get started.

8. Terms

• SOAP (Simple Object Access Proto-

col). A protocol for exchanging

XML-based messages over a com-

puter network, normally using

HTTP.[2]

• WSDL (Web Services Description

Language). An XML format pub-

lished for describing Web ser-

vices.[3]

• XML (Extensible Markup Lan-

guage). A way of describing data

and an XML file can contain the

data too, as in a database.[4]

• SSL (Secure Sockets Layer). Cryp-

tographic protocols which provide

secure communications on the Inter-

net.[5]

9. References

1. “Web Service.”

http://en.wikipedia.org/wiki/Web_servic

e, May 2006

2. “SOAP.”

http://en.wikipedia.org/wiki/SOAP, May

2006

3. “Web Services Description Language.”

http://en.wikipedia.org/wiki/Web_Servic

es_Description_Language, May 2006

4. “XML”

http://en.wikipedia.org/wiki/XML, May

2006

5. “Transport Layer Security”

http://en.wikipedia.org/wiki/Secure_Soc

kets_Layer, May 2006

